Effects of lignocellulose structure on single fiber tensile characteristics portrayal: a case of enset fiber
DOI:
https://doi.org/10.69660/jmpt.v1i1.68Keywords:
Enset, Ensetfiber, Lignocellulose, Structure, PycnometryAbstract
Fiber-level tensile characteristics are vital for micromechanical analysis and mechanical modelling of materials and their composites. This portrayal depends on diameter estimation accuracy, as the applied load is determined from the testing machine. Inline, natural fibers possess an internal cavity; the diameter found using microscopy denotes the external diameter which is larger than the diameter pertaining to actual load-carrying cross-section. This study presents a new approach that estimates diameter considering lignocellulose structure and hydrophilicity, thereby enabling the portrayal of more accurate tensile strength values. First, the fibers’ diameter is measured using a laser microscope, on various spots axially and the internal cavity was then considered to determine the actual diameter. The density of milled fibers is measured using Pycnometry. The diameter which relates to a solid load-carrying cross-section is identified using the relationship between density, mass and volume. The experiment design was framed and analyzed using Python and JMP Pro 13. The measured density of Enset is 1.38 g/cm3. The average overestimation of microscopy result is significant; it is 27.7µm which is about 21.8%. This underrates the actual tensile strength of Enset fiber by about 37.5%. That is σext=0.627σact. This, in turn, would affect micromechanical analyses and mechanical modelling. Thus, the need to consider lignocellulose structure for testing the tensile strength of Enset fiber is inevitable and the method utilized in this study can be used for other natural fibers of the same nature customizing the context.
References
B. Challenges and R. Developments, “A Comprehensive Review on Epoxy Biocomposites Based on Natural Fibers A Comprehensive Review on Epoxy Biocomposites Based on Natural Fibers and Bio ‑ fillers: Challenges, Recent Developments and Applications,” Adv. Fiber Mater., no. May, 2022, doi: 10.1007/s42765-022-00143-w.
S. Verma, “a Review on Thermal Behaviour of Natural Fiber Reinforced Composites,” no. 4, pp. 251–255, 2017.
E. Hassan, “Plant Fibers Reinforced Poly (Lactic Acid ) ( Pla ) As a Green Composites : Review,” Int. J. Eng. Sci. Technol., vol. 4, no. 10, pp. 4429–4439, 2012.
J. Andersons, “Tensile strength of single fibers: test methods and data analysis,” no. 2, p. 1.
J. Cline, V. Wu, and P. Moy, “Assessment of the Tensile Properties for Single Fibers,” vol. Cline, J., 2018.
A. Abdela, M. Versteyhe, and F. Taddese, “Characterization of Single Enset Fiber Tensile Properties Using Optimal Experimental Design and Digital Image Correlation Technique,” Int. J. Mech. Eng. Appl., vol. 8, no. 1, p. 8, 2020, doi: 10.11648/j.ijmea.20200801.12.
D. Depuydt, K. Hendrickx, W. Biesmans, J. Ivens, and A. W. Van Vuure, “Digital image correlation as a strain measurement technique for fibre tensile tests,” Compos. Part A Appl. Sci. Manuf., vol. 99, pp. 76–83, 2017, doi: 10.1016/j.compositesa.2017.03.035.
A. Abdela, B. Buffel, and F. Desplentere, “Determinants of Single Natural Fiber Stiffness Estimation Accuracy and Enhancement Possibilities,” Proc. Int. Conf. Ind. Eng. Oper. Manag., pp. 1495–1502, 2021.
N. Ezati and P. Sadeghi, “Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method,” 2020, doi: 10.1177/0892705720964560.
P. K. Ilankeeran, P. M. Mohite, and S. Kamle, “Axial Tensile Testing of Single Fibres,” Mod. Mech. Eng., vol. 02, no. 04, pp. 151–156, 2012, doi: 10.4236/mme.2012.24020.
S. N. Monteiro et al., “Selection of high strength natural fibers,” Rev. Mater., vol. 15, no. 4, pp. 488–505, 2010, doi: 10.1590/S1517-70762010000400002.
Y. Saadati, J. F. Chatelain, G. Lebrun, and Y. Beauchamp, “Comparison of density measurement methods for unidirectional flax-epoxy polymer composites,” Eur. Conf. Multifunct. Struct., pp. 1–6, 2019, doi: 10.23967/emus.2019.014.
A. Karimah et al., “A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations,” J. Mater. Res. Technol., vol. 13, pp. 2442–2458, 2021, doi: 10.1016/j.jmrt.2021.06.014.
S. S. Kumar and V. Anbumalar, “Selection and Evaluation of Natural Fibers – A Literature Review,” Int. J. Innov. Sci. Eng. Technol., vol. 2, no. 11, pp. 929–939, 2015.
B. Sanborn and T. Weerasooriya, “Tensile Properties of Dyneema SK76 Single Fibers at Multiple Loading Rates Using a Direct Gripping Method,” Conf. Proc. Soc. Exp. Mech. Ser., vol. 65, no. VOLUME 1, pp. 1–4, 2015, doi: 10.1007/978-3-319-06995-1_1.
B. Sanborn, A. M. DiLeonardi, and T. Weerasooriya, “Tensile Properties of Dyneema SK76 Single Fibers at Multiple Loading Rates Using a Direct Gripping Method,” J. Dyn. Behav. Mater., vol. 1, no. 1, pp. 4–14, 2015, doi: 10.1007/s40870-014-0001-3.
M. Analysis, “Lignocellulose,” vol. 5, no. 2, pp. 139–151, 2016.
Z. Kiflie, “Lignocellulose Chemical and Morphological Analysis of Enset ( Ensete,” Lignocellulose, vol. 5, no. 2, pp. 139–151, 2019, [Online]. Available: https://www.researchgate.net/publication/334284412.
M. E. Alves Fidelis, T. V. C. Pereira, O. D. F. M. Gomes, F. De Andrade Silva, and R. D. Toledo Filho, “The effect of fiber morphology on the tensile strength of natural fibers,” J. Mater. Res. Technol., vol. 2, no. 2, pp. 149–157, 2013, doi: 10.1016/j.jmrt.2013.02.003.
M. E. Alves Fidelis, T. V. C. Pereira, O. D. F. M. Gomes, F. De Andrade Silva, and R. D. Toledo Filho, “The effect of fiber morphology on the tensile strength of natural fibers,” J. Mater. Res. Technol., vol. 2, no. 2, pp. 149–157, 2013, doi: 10.1016/j.jmrt.2013.02.003.
M. D. Teli and J. M. Terega, “Chemical , Physical and Thermal Characterization of Ensete ventricosum Plant Fibre,” Int. Res. J. Eng. Technol., vol. 04, no. 12, pp. 67–75, 2017.
J. S. Borrell et al., “Enset-based agricultural systems in Ethiopia: A systematic review of production trends, agronomy, processing and the wider food security applications of a neglected banana relative,” Plants People Planet, vol. 2, no. 3, pp. 212–228, 2020, doi: 10.1002/ppp3.10084.
J. S. Borrell et al., “Enset in Ethiopia: A poorly characterized but resilient starch staple,” Ann. Bot., vol. 123, no. 5, pp. 747–766, 2019, doi: 10.1093/aob/mcy214.
C. Tamire, “Role of Enset (Ensete ventricosum (Welw.) Cheesman) in Soil Rehabilitation in Different Agro-ecological Zones of Hadiya, Southern Ethiopia,” Am. J. Environ. Prot., vol. 4, no. 6, p. 285, 2015, doi: 10.11648/j.ajep.20150406.14.
R. B. Adusumalli, K. C. Venkateshan, C. Kunchi, and S. R. Vadlamani, “Tensile testing of single fibres,” Procedia Struct. Integr., vol. 14, no. 2018, pp. 150–157, 2019, doi: 10.1016/j.prostr.2019.05.020.
A. A. Salih, R. Zulkifli, and C. H. Azhari, “Tensile Properties and Microstructure of Alkali Treatment,” Fibers, vol. 8, no. 26, pp. 1–10, 2020.
J. H. Kim et al., “Effect of fiber gripping method on the single fiber tensile test: II. Comparison of fiber gripping materials and loading rates,” J. Mater. Sci., vol. 50, no. 5, pp. 2049–2060, 2015, doi: 10.1007/s10853-014-8736-8.
A. A. Gelgelu et al., “Moisture Absorption Characteristics and Subsequent Mechanical Properties Loss of Enset-PLA Composites,” 2023, doi: 10.20944/preprints 202308.0494.v1.
A. Abdela, M. Vandaele, S. Haenen, B. Buffel, B. Sirahbizu, and F. Desplentere, “Moisture Absorption Characteristics and Subsequent Mechanical Property Loss of Enset – PLA Composites,” pp. 1–12, 2023.
M. F. M. Alkbir, S. M. Sapuan, A. A. Nuraini, and M. R. Ishak, “Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review,” Compos. Struct., vol. 148, pp. 59–73, 2016, doi: 10.1016/j.compstruct.2016.01.098.